US Scientists publish report on I-131 I-129 and Be-7 from Fukushima meltdown

To better understand iodine transport, Joshua Landis and a team drawn from Dartmouth’s Department of Earth Science and Department of Geography recently published a paper in the Proceedings of the National Academy of Sciences related to their research of the fallout of Iodine 131 from Japan.

Dartmouth research associate Joshua Landis prepares to introduce a radioactive sample into a gamma-ray spectrometer. Credit: Eli Burak

The levels of radioactivity they found in the US is a direct consequence of a nuclear reactor’s explosion and meltdown half a world away, says Joshua Landis, a research associate in the Department of Earth Science.

“We live on a really small planet and this demonstrates that what happens in Japan has the potential to affect us.”

The paper reports that testing in New Hampshire’s Mink Brook watershed during March through May 2011 showed the amount of radioactive iodine deposition in the soil was on the order of 6,000 atoms per square meter.

Sampling of Mink Brook stream sediments showed a doubling of iodine concentrations relative to what was found in soils. But even in these concentrations, stream and river transport are expected to result in significant dilution.

“Though regrettable, the Japanese catastrophe did provide a unique opportunity to examine the transport and accumulation of radioactive iodine in the environment,” Landis says. “We took up this study mostly as concerned scientists in our own right, wondering how much of this contaminant is really coming down, and where the iodine is moving in the landscape.”

 

Radioactive iodine-129, which is released concurrently with iodine-131,  is much longer lasting than iodine-131 and as it concentrates in certain areas over time, it may become more hazardous. “Due to its long half-life and continued release from ongoing nuclear energy production, [iodine-129] is perpetually accumulating in the environment and poses a growing radiological risk,” the authors point out.

The production rate of these two isotopes in a nuclear reactor occurs at a fixed ratio of 3 parts iodine-131 to one part iodine-129. The two substances travel together, so the presence of the easily detectable isotope also signals the presence of the longer-lived one.

“If you have a recent event like Fukushima, you are going to have both present. The iodine-131 is going to decay away pretty quickly over the course of weeks, but the iodine-129 is there forever, essentially,” Landis says. However, he explains, “Once the iodine-131 decays, you lose your ability to track the migration of either isotope.”

Thus, the group’s research turned toward the development of an innovative alternative approach to measuring and tracking the iodine. What became an important off-shoot of their work was the methodology of using the benign radioisotope, beryllium-7, as the tracking indicator. It’s an easily detected natural radionuclide, and is routinely used by the Dartmouth researchers in their environmental analyses.

The Dartmouth researchers have shown that beryllium-7 follows the same transport paths as the iodine isotopes. By ascertaining the ratio of association of the beryllium to the iodine, tracing the beryllium-7 as it moves through the environment then allowed the researchers to track the parallel transport of iodine, and to demonstrate the accumulation of iodine fallout in stream sediments.

Useful news and research on the energy and electricity industries.
About author
Read More About , , ,
Submit your comment

Please enter your name

Your name is required

Please enter a valid email address

An email address is required

Please enter your message

*

Enformable © 2014 All Rights Reserved

More in Editorials, Fukushima Daiichi
Hamaoka Nuclear
Chubu Electric told 18 ft seawall not enough protection at Hamaoka nuclear

Chubu Electric had been building an 18 ft seawall at it's Hamaoka plant in response to the Fukushima nuclear disaster.  Japan's nuclear safety agency has instructed Chubu Electric Power Company to implement comprehensive...

Close